Haven't got a glue: design principles for molecular glue degraders

Zuzanna Kozicka^{1,2}, Dakota J. Suchyta^{1,2,3}, Vivian Focht¹, Georg Kempf¹, Georg Petzold^{1,4}, Marius Jentzsch⁵, Charles Zou^{6,8}, Cristina Di Genua^{6,7,9}, Katherine A. Donovan^{10,11}, Marko Cigler¹², Cristina Mayor-Ruiz^{12,13}, Jonathan L. Schmid-Burgk⁵, Daniel Häussinger³, Georg E. Winter¹², Eric S. Fischer^{10,11}, Mikołaj Słabicki^{6,7}, Dennis Gillingham³, Benjamin L. Ebert^{6,7,14}, Nicolas H. Thomä¹

Affiliations:

 ¹Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; ²Department of Biology, University of Basel, Basel, Switzerland; ³Department of Chemistry, University of Basel, Basel, Switzerland; ⁴Current address: Monte Rosa Therapeutics, Basel, Switzerland;
⁵Institute of Clinical Chemistry and Clinical Pharmacology, University and University Hospital Bonn, Bonn, Germany; ⁶Broad Institute of MIT and Harvard, Cambridge, MA, USA;
⁷Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ⁸Current address: Yale University, New Haven, CT, USA; ⁹Current address: VantAI, New York, NY, USA;
¹⁰Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; ¹¹Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, USA; ¹²CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; ¹³IRB Barcelona – Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain; ¹⁴Howard Hughes Medical Institute, Boston, MA, USA.

Molecular glue degraders are an emerging therapeutic strategy that exploit induced proteinprotein interactions to drive ubiquitin-mediated degradation of challenging targets. However, their discovery has largely relied on serendipity, constraining their broader potential. By systematically analyzing correlations between small-molecule cytotoxicity and E3 ligase expression across human cancer cell lines, we identified CR8—a cyclin-dependent kinase (CDK) inhibitor—as a molecular glue degrader that induces degradation of cyclin K by recruiting the DDB1-CUL4 E3 ligase to CDK12-cyclin K. Our structural, biophysical, and cellular investigations reveal that CR8 exploits a solvent-exposed pyridyl moiety to engage DDB1 at key interfacial residues, particularly Arg928, while bypassing the need for a canonical DCAF substrate receptor. Notably, we found that other, diverse chemical scaffolds can also drive this interaction, challenging the notion of steep structure-activity relationships commonly associated with molecular glues. Furthermore, small chemical modifications can precisely tune the balance between CDK12 inhibition and cyclin K degradation, with degradation occurring independently of strong kinase inhibition. These findings define a novel class of cyclin K-targeting agents and provide a foundation for the rational design of molecular glue degraders, opening new avenues for therapeutic innovation.